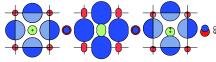
	Dielectric properties of insulating oxides
	This is one of the largest fields of applications of oxides in electronics. Dielectrics are widely used in capacitors, microwave devices, and filters.
	What we look at is the response of a material to an electric field. Some of the important para- meters are:
Physics of Transition Metal Oxides	The electric field ${f E}$
Lecture 5	The <i>polarization</i> ${f P}$ (dipole moment per unit volume)
Dielectric properties of oxides	The electric displacement ${f D}$
	If we have microscopic dipoles in the material, these will align with an external field and thus
	$P = \epsilon_0 \chi E,$
	where ϵ_0 is the <i>dielectric permittivity</i> of free space (vacuum) and χ is the <i>electric susceptibility</i> .
1	2
In anisotropic materials ${f P}$ and ${f E}$ are not parallel and the relationship is not linear when the field	In practice, ϵ_r , called the <i>dielectric constant</i> , is not a constant at all, but depends on temperature,
is very strong.	pressure, and measurement frequency.
	Compound Temperature (K) ϵ_{opt} ϵ_{static}
Electric displacement is given by	TiO ₂ (c) 300 8.4 170 0 - 257
$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}.$	TiO ₂ (∥a) 300 6.8 86
We can thus write	0 - 111
	SrTiO ₃ 0 6 ~30000
$\mathbf{D} = \epsilon_0 \epsilon_r \mathbf{E}, \epsilon_r = 1 + \chi,$	CaTiO ₃ 300 6 180
or	100 - 330 PbTiO ₃ 300 7 300
	PbTiO ₃ 300 7 300 CaZrO ₃ 300 - 25
$\mathbf{P} = \epsilon_0(\epsilon_r - 1)\mathbf{E}.$	$M_{0}O_{3}$ 300 5 20
What we usually look at is ϵ_r , the relative dielectric constant. This gives us the index of refraction	KTaO ₃ 0 - ~4000
	WO ₃ 300 5 variable
$n=\sqrt{\epsilon_r},$	
i.e. the speed of light in a medium $v = c/n$.	There is a rough inverse correlation between ϵ_{opt} and the gap width. Thus TiO ₂ has a large
	$\epsilon_{ m opt}$ and a wide gap. It is transparent in the visible region and has a very high refractive index
	(good for micro-optics). Large ϵ_{opt} also implies high reflectivity, which is why TiO ₂ powder is
	used as a pigment in white paint.
3	A

	Figure resourced due to copyright restrictions	Figure removed due to copyright restrictions			Figure removed due to copyright restrictions	important c • Coerciv • Remar	netic hysteresis loop is familiar, with three haracteristics, ve field hent magnetization tion magnetization
Large show Espea	Cox92 P.111 Large changes in dielectric constant usually happen close to structural phase transitions, as shown here for PbTiO ₃ . Especially in various perovskites the structure appears to be on the edge of stability (ionic radius). This results in very large lattice polarizability. That is why the perovskite group includes			Hippel54 p.270	Figure removed due to copyright restrictions	sis loop of	ectric material we have a similar hystere- polarization vs. electric field and the cive, remanent, and saturation parame-
	ferroelectric oxides, like NaNbO ₃ ,		5				6
	ctric constant temperature depender			Ferroelectric h	ysteresis loops of BaTiO ₃ a	are shown he	ere as a function of temperature:
	Figure removed du copyright restricti	e 1o ms	Rao98 p.287 7		Figure removed dae to copyright restrictions		Hippel54 p.271

Soft-mode theory

Soft-mode theory is used to explain these large changes of the dielectric constant close to a phase transition.

First we look at the contribution of lattice polarization to the static dielectric constant. This can be expressed as


$$\epsilon_{\rm S} - \epsilon_{\rm opt} = \sum_i \Omega_i^2 / \omega_i^2,$$

where ω_i is the frequency of a vibration mode, and Ω_i is related to the *effective charge* carried by the ions in this vibration mode. The important modes are the transverse-optic modes, which contribute to a long-range dipole field.

The long-range dipole field results in an attractive force, which counteracts the usual shortrange repulsive forces. The vibrating ions interact with the long-range field and usually the frequency of one mode gets reduced, giving a very large contribution to the dielectric constant. Remember.

 $\mathbf{P} = \epsilon_0 (\epsilon_r - 1) \mathbf{E}.$

In an extreme case, the frequency would drop to zero, the static dielectric constant would be infinite and instead of an atomic vibration we would have a static displacement, i.e. a ferroelectric material.

The temperature dependence arises from the anharmonic distortion of the short-range forces. These give a temperature dependence of

$$\omega^2 = C(T - T_0)$$

for a mode frequency ω . If only a single mode contributes to the dielectric constant, we would have

$$\epsilon_s = C'/(T - T_0)$$

This would be basically similar to a Curie-Weiss law for magnetic systems.

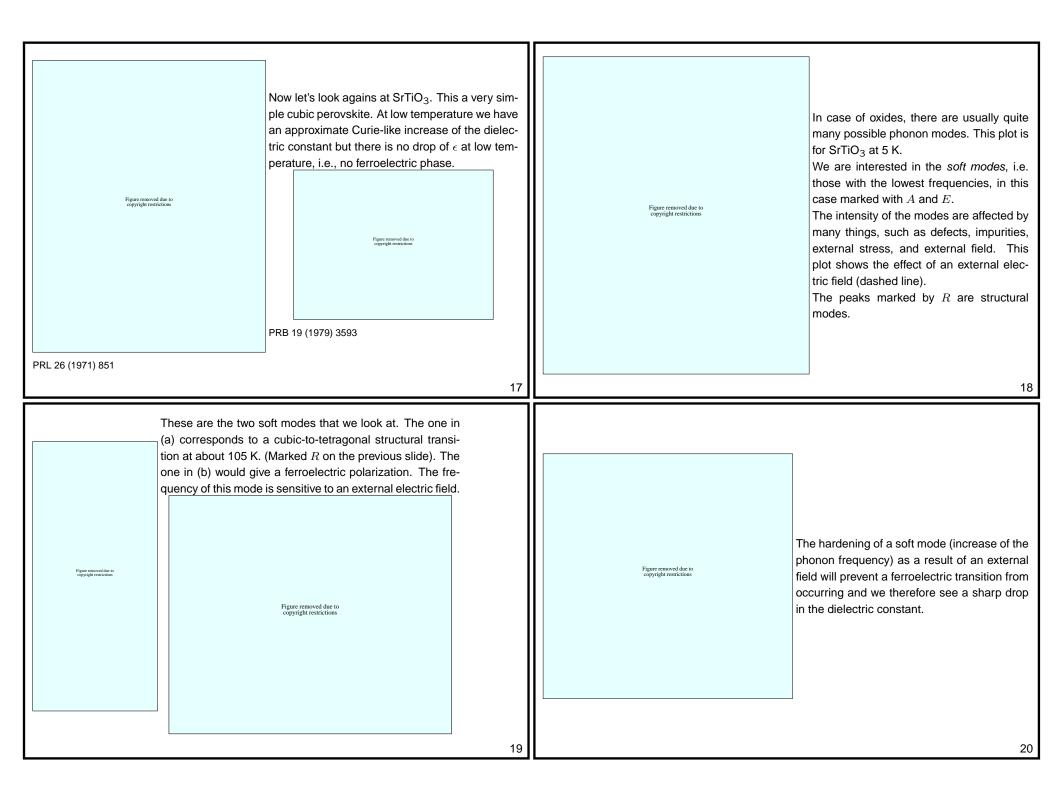
The simple soft-mode theory predicts:

- The vibrational spectrum of a solid should show a transverse optic mode which softens (frequency drops) to zero at the Curie temperature.
- The static dielectric constant should follow the Curie-Weiss form

This theory neglects damping of modes, detailed anharmonic effects, and it is a mean-field theory, i.e. it does not include the effects of fluctuations. These are responsible for the quantum araelectric phase of SrTiO_e at low temperatures

Figure removed due to

copyright restrictions	huge increase in ϵ , but the value stays con-	paraelectric phase of St 103 at low temperature	
PRL 26 (1971) 851	stant below 10K without entering a ferro- electric state. The transition can be in- duced by an external electric field. When $T_0 > 0$ K, then it can be called <i>Curie</i> <i>temperature</i> , below which we have a ferro- electric phase.	Figure removed due to copyright restrictions	This plot shows the square of the frequency of the lowest TO mode and $1/\epsilon_s$ as a function of temperature in PbTiO ₃ . Approximate straight lines are visible, but they drop to zero below the transition temperature.
	11	Cox92 p.113	12


0

In many materials the critical temperature T_0 is less than zero and a complete mode

softening does not happen. In some cases it appears to be very close to zero, as in

KNbO3 or SrTiO3. In SrTiO3 there is a

10

		Some terminology:
Figure removed due to copyright restrictions	Why the field-dependent ϵ is useful? We can plot the dielectric properties as function of field strength at a fixed temperature for SrTiO ₃ . Especially in thin films we can see a rather large ϵ change even at temperatures that are much higher than the ferroelectric transition, as shown here 5 K, and 190 K. This can be used to build tunable fil- ters. A bandpass filter might look like this Figure removed due to copyright restrictions By applying a DC voltage on the capacitors, we can quickly retune the filter to a different frequency.	Ferroelectrics are an analogue of ferromagnets and show a spontaneous polarization in the absence of an electric field. Ferroelectrics have a permanent dipole moment. In some cases neighborng planes orient in an antiparallel configuration. This would give an <i>antiferroelectric</i> material. This type of lattice does not show a hysteresis curve, but does show a dielectric constant anomaly close to the transition temperature. In a <i>ferromagnet</i> the orientation of magnetization M can be switched with an external magnetic field H . In a <i>ferroelectric</i> the orientation of the electric polarization P can be switched with an external electric field E . In a <i>ferroeleastic</i> material the direction of spontaneous strain ϵ (change of length) can be switched by applying mechanical stress σ (pressure). These are all known as <i>ferroic</i> transitions. In oxides, for example, BaTiO ₃ is a ferroelectric, CrO ₂ is a ferromagnet, and CaAl ₂ Si ₂ O ₈ is a ferroelastic. These are all <i>primary ferroics</i> .
	21	22
There are also secondary ferroics could be	s, where ordering can be induced by an external field. These	Piezoelectricity
could be		
could beInduced electric polarization,	s, where ordering can be induced by an external field. These	Piezoelectricity A crystal generates a static charge on the surface when pressed or changes its size when
could beInduced electric polarization,	s, where ordering can be induced by an external field. These characterized by susceptibility k_{ij} . n, characterized by magnetic susceptibility χ_{ij} .	Piezoelectricity A crystal generates a static charge on the surface when pressed or changes its size when placed in an electric field. All crystals that do not have a center of symmetry (no inversion symmetry) are piezoelectric. Those piezoelectrics that can be <i>poled</i> are also ferroelectric. For example, quartz (SiO ₂) is piezoelectric, but not ferroelectric. All ferroelectrics, however, are also piezoelectric. The piezoelectric response can be maximized by creating solid solutions like
 could be Induced electric polarization, Induced magnetic polarization Strain induced by elastic com 	s, where ordering can be induced by an external field. These characterized by susceptibility k_{ij} . n, characterized by magnetic susceptibility χ_{ij} . npliance, C_{ijkl} .	 Piezoelectricity A crystal generates a static charge on the surface when pressed or changes its size when placed in an electric field. All crystals that do not have a center of symmetry (no inversion symmetry) are piezoelectric. Those piezoelectrics that can be <i>poled</i> are also ferroelectric. For example, quartz (SiO₂) is piezoelectric, but not ferroelectric. All ferroelectrics, however, are also piezoelectric.

Nonlinear optical response is also a common feature of d^0 oxides. In general, dielectric polarization is nonlinear, $\mathbf{P} = \epsilon_0(\chi^{(1)}\mathbf{E} + \chi^{(2)}\mathbf{E}^2 + \chi^{(3)}\mathbf{E}^3 + \cdots)$ or for the relative dielectric constant $\epsilon_r = 1 + \chi^{(1)} + \chi^{(2)} + \chi^{(3)} + \cdots,$ where $\chi^{(1)}$ is the usual linear susceptibility. The dielectric constant thus depends on the field strength. The most important terms are $\chi^{(2)}$ and $\chi^{(3)}$, the <i>second-order</i> and <i>third-order</i> non-linear susceptibilities. Higher terms vanish quickly. The second-order polarization would be (if we look at all the vector components) $P_i^{(2)} = \epsilon_0 \sum_{j,k=x,y,z} \chi^{(2)}_{ijk} E_j E_k,$ where $\chi^{(2)}_{ijk}$ is the second-order nonlinear susceptibility tensor, a rank 3 tensor. The two fields, E_j and E_k , may come from the same light source or from different sources.	For centrosymmetric crystals this value is zero. For materials without a center of symmetry (piezoelectrics), the largest effects are seen in those with a large linear polarizability (those with a large dielectric constant). Important examples are LiNbO ₃ and KTiO(PO ₄) - potassium titanyl phosphate, or KTP. All such materials have a very distorted cluster around the metal ion.
25	26
One of the most important applications of nonlinear optics is frequency mixing. $P_i^{(2)} = \epsilon_0 \sum_{j,k=x,y,z} \chi_{ijk}^{(2)} E_j E_k,$ If we have two fields with $E_1 = \mathcal{E}_1 \cos \omega_1 t$ and $E_2 = \mathcal{E}_2 \cos \omega_2 t$, $P^{(2)}(t) = \epsilon_0 \chi^{(2)} \times \mathcal{E}_1 \cos \omega_1 t \times \mathcal{E}_2 \cos \omega_2 t$ $= \epsilon_0 \chi^{(2)} \mathcal{E}_1 \mathcal{E}_2 \frac{1}{2} [\cos(\omega_1 + \omega_2)t + \cos(\omega_1 - \omega_2)t].$ This shows that we get two outgoing beams with frequencies $\omega_{sum} = \omega_1 + \omega_2$ $\omega_{diff} = \omega_1 - \omega_2$ The most important one is the sum frequency. The process is known as frequency doubling or second harmonic generation.	Other closed-shell oxidesIn addition to the d^0 compounds, there are also other closed shell compounds with a diamagnetic ground state. $\overline{\begin{array}{c} Compound \\ Cu_2O \\ 3d^{10} \\ Cu_2O \\ 4d^{10} \\ 4d^8 \\ 4(square planar) \\ 2(linear) \\ 4d^8 \\ 4(square planar) \\ 1 \\ LaCoO_3 \\ 3d^6 \\ 6(cotahedral) \\ 1.6 \\ \end{array}}$ The d^{10} configuration exists in Cu_2O. The gap is formed between the filled Cu $3d$ levels and an empty band of mostly Cu $4s$ character. For later elements in the same row, such as Zn^{2+} in ZnO or Sn ⁴⁺ in SnO ₂ also have a d^{10} configuration, but in these the d electrons have little effect on the electronic properties and behave more like core electrons. In ZnO and SnO ₂ the valence band consists of oxygen $2p$ orbitals, just like to d^0 oxides.