	Transition Metal Oxides Lecture 10 h-temperature superconductors	$\begin{tabular}{ c c c c c } \hline Above a critical temperature, T_c, superconductors are typically normal metals, but not very good conductors. Below T_c, resistivity is zero and the material is a perfect diamagnet. Pure metals, like Pb, Ta, Sn are superconductors, while Cu, Ag, or Au are not. \\\hline \hline Material & T_c (K) & Year \\\hline Hg & 4.1 & 1911 \\Pb & 7.2 & 1913 \\Nb & 9.2 & 1930 \\NbN_{0.96} & 15.2 & 1950 \\Nb_3Sn & 18.1 & 1954 \\Nb_3Ga & 20.3 & 1971 \\Nb_3Ge & 23.2 & 1973 \\Ba_xLa_{5-x}Cu_5O_y & $30-35$ & 1986 \\YBa_2Cu_3O_{7-\delta} & 95 & 1987 \\Bi_2Sr_2Ca_2Cu_3O_{10} & 110 & 1988 \\T_12Ba_2Ca_2Cu_3O_{7-\delta} & 95 & 1987 \\Bi_2Sr_2Ca_2Cu_3O_{10} & 125 & 1988 \\HgBa_2Ca_2Cu_3O_{8+\delta} & 133 & 1993 \\HgBa_2Ca_2Cu_3O_{8+\delta} & 155 & 1993 \\HgBa_2Ca_2Cu_3O_{8+\delta} & 155 & 1993 \\HgBa_2Ca_2Cu_3O_{8+\delta} & 155 & 1993 \\HgBa_2Ca_2Cu_3O_{8+\delta} & 156 & 1994 \\Hg$			
 Figure removed due to copyright restrictions cubic: high-temperature ph 64.57 Å³ tetragonal: room-temperature 	We start by reviewing lattice distortions in perovskites, tak- ing BaTiO ₃ as an example. We already looked at BaTiO ₃ earlier when discussing ferroelectric oxides. Ti (B-site) has 6 oxygen neighbors, Ba (A-site) has 12 nearest neighbor oxygens. BaTiO ₃ has three possible crystal structures: ase (above 200 °C) with $a = b = c = 4.0118$ Å, $V =$ re phase, ferroelectric, $a = b = 3.9947$ Å, $c = 4.0336$ Å,		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$V = 64.37 \text{ Å}^3.$ • orthorhombic low-temperature phase (below room temperature), $a = 4.009\sqrt{2}$ Å, $b = 4.018\sqrt{2}$ Å, $c = 3.990$ Å, $V = 2(64.26)$ Å ³ .		Figure removed due to copyright restrictions Centered Ce	$\begin{array}{c} \text{Figure matrix}\\ \text{for } (1,0,2,1), (1,2,0), (1,2$		

		Tetragonal BaTiO ₃
Figure resound due to copyright monotations	Ba and O are almost the same size. The BaO layer (with- out transition metal ions) would form a close-packed cubic lattice with a lattice constant of 3.73 Å. The holes would have a radius of 0.545 Å.	The tetragonal distortion $(c-a)/\frac{1}{2}(c+a)$ is 1%. The shift off the cubic positions is about 0.1 Å. The Ti-O-Ti bonds bend and the Ti-O distance changes. The Ti-Ti distance remains practically the same.
Figure reserved due to copyright restantions	Inserting the Ti ions pushes the oxygens apart, increasing the lattice constant. Replacing Ba with smaller Ca or Sr reduces the lattice constant.	An orthorhombic structure can arise by distorting the <i>a</i> , <i>b</i> axis lengths, or by distorting the length of the diagonals.
	5	Poole95 p.177 6
		Most of the high- T_{C} oxides are cuprates, some are not:
a Figure removed due to supplier constance t	The diagonals now become the new lattice axes and the unit cell doubles in size (approximately). The lattice parameters are larger by $\approx \sqrt{2}$. In case of BaTiO ₃ the deviation from a tetragonal structure is $\frac{100 b-a }{\frac{1}{2}(b+a)} = 0.22\%$ The orthorhombic distortions changes the	$\begin{array}{l} Ba_{1-x}K_xBiO_{3-y}\\ \\ \text{For }x>0.25 \text{ it forms a perovskite with }a=4.29 \text{ Å. Potassium partli substitutes Ba at the body center site, Bi ions are at the corners. Some of the oxygens are missing from the edge sites. K and Ba are nearly the same size. Bi valence is a mixture of Bi3+ and Bi5+. The lattice constant is unusally large due to the large size of the Bi3+ ion (0.96 Å).\\ \\ \text{The }T_{C} \text{ reaches a maximum of about 40 K at }x=0.4.\\ \\ \\ \text{Although there is no copper in this structure, it has a mixed-valent transition metal and oxygen vacancies are needed for charge compensation. These features are common to all high-T_{C}$
	atomic distance in the a and b directions. ry common in High- T_{C} oxides: rhombal in $(La_{1-x}Sr_x)CuO_4$ and	materials. BaPb _{1-x} Bi _x O ₃ Has a T_c of up to 13 K in the range $0.05 \le x \le 0.3$. Only the tetragonal phase is superconducting, not the cubic phase. Otherwise has a similar charge disproportionation of $2Bi^{4+} \rightarrow Bi^{3+} + Bi^{5+}$

Our sector of						
Cuprates			Aligned cuprates			
Figure removed due to copyright restrictions	Cuprate superconductors have Cu^{2+} ions in the place of the Ti ions of the BaTiO ₃ structure. The lattice constant in the <i>a</i> , <i>b</i> plane is largely determined by these CuO_2 layers. Note that a Cu analogue of BaTiO ₃ , BaCuO ₃ , does not exist because the Cu ⁴⁺ ion does not exist in oxides. Each compound has a unique sequence of layers in the <i>c</i> -axis direction. • superconducting layers: [Cu O ₂ -] and [- O ₂ Cu] • insulating layers: [Y] or [Ca] • hole-donating layers: [Cu O ^b -] or [Bi - O]		Poole95 p.181 Atomic layers in YBa ₂ Cu		cell. All atoms (except those twice in the unit cell.	In at the center of the unit cell. the top and bottom of the unit in the σ_h plane) thus appear
Poole95 p.181			YBa ₂ Cu ₃ O ₇ is often refe	erred t	o as YBCO or simply 123. It has	s a T_{C} of 92 K.
	9					10
Figure removed due to copyright restrictions	Figure removed due to copyright restrictions		T C C a t	The two dinatior Oxyger ally wr ra oxy	(1) ions in the chains have a so to other Cu(2) copper sites have the stoichiometry is very important to stoichiometry is very important titten as YBa ₂ Cu ₃ O _{7-δ} . We transform the a-axis the stoiching in a superconducting	a fivefold pyramidal coorant. The formula is usu/hen δ < 0, the exsites in the chain lay-
	Poole95 p.183				Figure removed due to convirial associations	
missing oxygen. This explains or <i>b</i> -axis (3.88 Å) length. Only	perovskite units: BaCuO ₃ , YCuO ₂ , and BaCuO ₂ , with some why the <i>c</i> -axis length (11.68 Å) is $\approx 3 \times$ the <i>a</i> -axis (3.83 Å) the orthorhombic structure (copper-oxygen chains) is super- andomly distributed along the <i>a</i> and <i>b</i> axes in the tetragonal					
pridoo.				L		Poole95 p.185
	11					12

					Oxygen stoichiometry			
Char	ge distribution							
	Figuration to a suggestion to a		Figure resorved due to copyright restrictions	Poole95 p.186	Figure removed due to copyright restrictions		Oxygen can be loaded into or removed from the $YBa_2Cu_3O_{7-\delta}$ structure by annealing in pure oxygen or in a vacuum. Extra oxygen or vacancies directly affect the chain sites in the structure but there is a significant amount of charge transfer between the copper layers. There are two superconducting phases, depending on the oxygen content, with T_c of 92 K and 60 K. Superconductivity disappears in YBa ₂ Cu ₃ O _{6.4} . At this	
The c	hain sites are clearly	visibl	 + ions are completely ionized. Cu an e. The weakest Cu-O bond is betwee an average charge of +1.62 for copped 	en the Cu(2) and apical			point the average copper oxidation state is below 2.	
				10	Cox92 p.253			
<u> </u>				13	00,02 p.200			14
					Body-centered cuprates			
Side-	centered cuprates							
PooleS	Figure removed dar to copyright controlline		In side-centered lattices for each (x, y, z) there is an identical atom a $\frac{1}{2}, z + \frac{1}{2}$). One example is YBa ₂ Cu ₄ a double layer of Cu-O chains. T_c is in Another example is Y ₂ Ba ₄ Cu ₇ O ₁₅ , 1:1 intergrowth of 123 and 124 composed as high as 90 K.	at a position $(x, y + O_8, in which we havethe 40 to 80 K range.which is an ordered$	Figure renoved due to copyright restrictions	atom at (x, y) Half of the C	ed lattices have an additional symmetry with each (x, z) having an identical atom at $(x \pm \frac{1}{2}, y \pm \frac{1}{2}, z \pm \frac{1}{2})$. u-O planes are [Cu O ₂ -] and half are [- O ₂ Cu]. The wn here is for Tl ₂ Ba ₂ CaCu ₂ O ₈	

La_2CuO_4 and derivatives.				[O - La] and [La - O] layers	$_2$ CuO ₄ . The apical O(2) oxygens in the now move into a separate O(3) [- O ₂ -] a] layers. The Cu octahedra have now
Figure represent due no congregationalitation	Figure removed due to copyright restrictions		Figure second on the	lost the apical oxygens, leav While La_2CuO_4 is a hole-tron composition is $Nd_{1.85}Ce_{0.1}$ La and Nd are both trivalent gens $La - Nd \rightarrow$	ying a square-planar CuO ₄ layer. ype superconductor, the Nd ₂ CuO ₄ is a h-type superconductor. The best known ${}_5$ CuO _{4−δ} . and both donate three electrons to oxy- + La ³⁺ + 3e ⁻ + Nd ³⁺ + 3e ⁻
Poole95 p.1 The T phase consists of a stacking of CuO ₄ La ₂ and La ₂ O ₄ Cu groups. The CuO ₂ planes are mirror planes in the lattice and are thus not buckled. The parent compound La ₂ CuO ₄ is an antiferromagnetic insulator. A superconducting composition is obtained by doping, e.g. $(La_{1-x}Sr_x)_2CuO_4$ with $x = 3 - 15\%$.				The doping is done by replacing La \rightarrow Sr or Nd \rightarrow Ce Sr \rightarrow Sr ²⁺ + 2e ⁻ Ce \rightarrow Ce ⁴⁺ + 4e ⁻ Sr doping thus decreases the number of electrons, creating a hol doped compound while Ce doping increases the number of electrons, producing an electron-doped compound.	
Electron-doped superconduct	ors		$T_{\rm C}$ above 100 K		
cuprates is always less than	are hole-type materials. The <i>a</i> -axis length of the hole about 3.92 Å. The lattice constant of electron-doped of the end of the superconducting electron-doped material, it is ner- en stoichiometry adjustment. The best-known example is $Nd_{2-x}Ce_xCuO_{4-y}$, we achieves the highest T_C when $x = 0.15$ and $y = 0$. The formula could be written as $(Nd^{3+})_{2-x}(Ce^{4+})_xCu^{(2-q)+}(O^{2-})_{4-y}$ and the concentration of chemically-doped carriers is q = x + 2y.	uprates cessary vhich 0.04.		rigure removed due to copyright restrictions	Two families of compounds $Bi_2Sr_2Ca_nCu_{n+1}O_{6+2n}$ $Tl_2Ba_2Ca_nCu_{n+1}O_{6+2n}$ The TI compounds shown in the figure correspond to the $n = 0, 1, 2$ mem- bers of the TI family, also known as the 2201, 2212, and 2223 phases. The critical temperatures are 85 K for $n =$
	The highest T_c occurs when $x = 0.15$ and $y = 0.04$ ing $q = 0.23$. Both x and y are necessary to achiev perconductivity. This shows that we need the correct rier concentration but apparently also some form of the structure modification by (at least local) lattice distort like buckling of the otherwise flat CuO layers.	e su- t car- band-			0, 110 K for $n = 1$, and 125 K for $n = 2$.

T _C above 130 K	The first superconductor found was Hg metal. The highest T_c values seen in cuprate superconductors also contain Hg in a family of compounds HgBa ₂ Ca _n Cu _{n+1} O _{2n+4} Compounds with $n = 0, 1, 2$ have been synthesized with T_c of 95, 122, and 133 K.	Doping cuprates	The undoped parent compounds of high- T_c ox- ides are typically antiferromagnetic insulators. This is to be expected for a regular Cu-O-Cu arrangement of atoms (superexchange). Both n-type (Nd ₂ CuO ₄) and p-type (La ₂ CuO ₄ and many others).
	Poole95 p.200 21	Cox92 p.254	22
Resistivity above T _C	The so-called 'high- T_c ' materials are much worse conductors than good metals, like Cu or ag. The transition to superconduct- ing state also happens in a different tem- perature regime, the T^5 region for simple metals, and in the linear region for high- T_c materials. The room temperature resistivity is about 1000 times higher that pure metals. The drop from room temperature to the transition temperature is by a factor of 2 to 3 and the drop is linear in the hole-doped 123-type compounds	$\frac{\text{differen}}{\rho_c/\rho_{ab}}$	vered oxides have a very different conductivity in t lattice directions. For YBa ₂ Cu ₃ O ₇ we have ≈ 100 and for Bi _{2+x} Sr _{2-y} CuO _{6+δ} the ratio can .0 ⁵ . The normal state resistivity can be described $\rho_c = \frac{A_c}{T} + B_cT$
Poole95 p.27	RBa ₂ Cu ₃ O ₇ .		24

Superconductors in a magnetic	field				
Superco state If a may will be materia	The definition of the superconducting $M = -H$ graphic field is applied to a superconducting object, the field excluded from the object. If the field is applied when the is in its normal state and the cooled, the magnetic field will led from the object's interior <i>Meissner effect</i> .	The penetration depth varies with material. Simple metals usually have $\lambda \approx 30 - 60$ nm. This applies to Sn, Ta, Pb, Nb, etc. and also for A15 compounds like Nb ₃ Sn or Nb ₃ Ge. Oxide superconductors generally have larger penetration depth values, around 200 (YBa ₂ Cu ₃ O ₇) Some metal alloys, like Nb-N have similar values. Just like resistivity, the penetration depth is also direction dependent in layered oxides. The measured values vary a lot, depending on experiment, but for YBa ₂ Cu ₃ O _{7-δ} $\lambda_c \approx 180$ nm while $\lambda_{ab} \approx 30$ nm. Values reported for HgBa ₂ Ca ₂ Cu ₃ O _{8+δ} are $\lambda_c = 3500$ nm, $\lambda_{ab} = 130$ nm. Another parameter that is very important for characterizing superconductors is the <i>coherence</i>			
	gnetic field, the surface layer of a superconductor would carry ing current. This current exists in a layer with a characteristic is λ .	<i>length.</i> This can be thought of as the spatial extent of a Cooper pair. This parameter is <i>very</i> different for traditional metallic superconductors and oxide superconductors. Some typical values are Al: 550 nm, In: 360 nm, Sn: 180 nm, Ta: 92 nm, Pb: 82 nm, Nb: 39 nm. Oxides have typical values in the 13 nm range. The coherence length is also anisotropic: $YBa_2Cu_3O_{7-\delta}$: $\xi_{ab} = 1.6$ nm, $\xi_c = 0.3$ nm.			
The penetration depth and coh	erence length determine the Ginzburg-Landau parameter	1			
	$\kappa = \frac{\lambda_L}{\epsilon}$	Type II: $\kappa > rac{1}{\sqrt{2}}$			
Superconductors are divided in	\$	Below a lower critical field H_{c1} there is no penetration of magnetic field into the superconductor. Above the upper			
Type I: $\kappa < \frac{1}{\sqrt{2}}$		critical field, H_{c2} , the entire sample reverts to normal state. Between these values the flux penetrates through the superconductor in the form of filaments or vortices.			
Figure resourced due to copyright excitations	Below a critical field H_c there is no flux penetration into the superconductor. At the critical filed, the whole material	Figure mixed de la coprigit restricton			
	reverts to normal state and the external field penetrates into the normal-state superconductor.	Poole95 p.267 In oxides, the lower critical field is 100 mT or less, in all crystal directions. The upper critical field can be very high, The estimated values for YBa ₂ Cu ₃ O _{7-δ} are B_c =2 T and B_{ab} =240 T			
Poole95 p.267	27	28			

The energy spectrum The most widely used theory for superconductors in general is the BCS, or Bardeen, Cooper, Schrieffer theory, based on the idea of electron pairing (the <i>Cooper pairs</i>). One of the predictions of the theory is that an energy gap opens at the Fermi energy when a material becomes su- perconducting. The gap width is tied to the critical temper- ature $\frac{\Delta_0}{k_B T_c} = 1.76,$ i.e. $2\Delta_0/k_B T_c = 3.52$. This appears to be the case for simple metallic superconductors	Figure removed due to copyright restrictions Poole95 p.167 The match is not good for the cuprate superconductors. The applicability of the BCS theory to cuprates is still an open question, more that 15 years after their discovery.
Applications of high-T _c cuprates Image: Particular State	References: Poole95 C. P. Poole Jr., H. A. Farach, R. J. Creswick, "Superconductivity", Academic Press, San Diego, 1995. Cox92 P. A. Cox, "Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties", Clarendon press, Oxford, 1992. 32