Perturbation Theory 2

1 Time-dependent Perturbation
1.1 Generalization
When the perturbation Hamiltonian H'ig dependent of time !, we need to deal with
the problem in a way that is completely different from that of time-independent case. In
this case, we deal with the time dependent Schrodinger’s equation.
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Assume the solution to be:
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@m is the eigenstate of the unperturbed Hamiltonian, and @t s the time

dependent eigenstate when H(t)=10,
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Substitute (2) into (1) to organize the equation:
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1) a known function.
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In principal, (5) is calculated, hence (4) can be solved by Hini
1.2 Sequential Approximation
The equation (4) is consecutively solved under the initial condition (6):
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Ignore Hi 1) on the right side, then:
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Substitute this """ for the right side of the equation to integrate:
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Further, substitute I7''/into the right side equation of (4) to obtain the following

equation:
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Limiting Cases:
Constant perturbations



We consider the perturbed Hamiltonian, which is constant, but switched-on at t=10;
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From the equation (8), we obtain:
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where Hin = {0m|H c-_.,}. Then we can obtain
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Now, using the equation followings will yield:
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There is a consecutive distribution of transitioned states, and we assume the number of
states in between & ~ £+ AE t5 be given by PLEIAE Here Elis called the

state density. In this case, the transition probability per a unit time is calculated as:
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The above implies the transitions occur only among states possessing the same energy.
Sinusoidal perturbation

Let us now consider the electromagnetic field that oscillates:
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Ut can be calculated in the same manner we did in above:
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Likewise, the transition probability can be derived in the same way (15):
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This indicates that among states with different energies, a finite energy is absorbed (or



emitted) from oscillating external field and transitions occur.
2 Variation Method
[]} P accurate ground states
¥) : approximational ground states (include a variation parameter)

Expand the state %) as following:
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To assess this:
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Therefore, the ground state of the energy Eu is assessed by the wvariational

wavefunction |L'}I
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