
A New Degree of Freedom in Quantum Mechanics: Spin 
The origin of the spin angular momentum was explained at first by a fact that an 
electron possesses a finite momentum associated with rotation that arises magnetic 
dipole excitation in the center of an electron. However, as we already know, we can 
explain the origin of the spin only by Dirac equations, which an electron obeys. 
Although Schrodinger’s equations do not satisfy the invariance of Lorenz 
transformation in the “relativity” requires, Dirac equations was introduced as the first 
equation invariable to Lorenz transformation. This is a good example to realize how 
important the symmetry is for the new discovery. 
Multiplet-term of Spectrum 
Sodium is placed in a furnace, and heated to the point of evaporation then be passed 
through a small slit to produce atomic beam. Then let it pass through in between the 
magnets to leave a coating by evaporation on glass plate. Sodium atom on the glass 
plate is observed in two separate groups with a distance of the two proportional to the 
magnitude of the magnetic field. We can attribute the separation of the sodium beam to 
the following fact; in proportional to the magnetic field, the force perpendicular to the 
traveling direction of the atomic beam was acted in positive direction, while the other 
force was acted in negative. Apparently, magnetic field in between the magnets is not 
homogenious. The field ceates a negative and a positive force proportional to the rate of 

change . The peripheral electron in sodium atom possesses a  electron 
(closed with ; identical to the inert gas Ne) so, the electron does not 
possess the orbital angular momentum and therefore, does not interact with the 
magnetic field.  
Since we have magnetic flux density in  direction,  can be given with 

 then Hailtonian may be: 

     (1a) 

The orbital angular momentum  is expressed in the first term of . 
With , we have established . Accordingly, the 
Hamiltonian can be expressed as: 

      (1b) 
The third term in (1b) is called Zeeman term, and the fourth term is called 
diamagnetism. Zeeman term represents the interaction with an orbital angular 



momentum in uniform magnetic field, therefore splits the energy level at the magnetic 
field, and this is called Zeeman effect. 
The orbital momentum of electrons interact with external magnetic field, yet sodium 
atom possesses one peripheral electron in  orbital with the orbital angular 
momentum , the third term in (1) becomes zero, and there is no contribution. We 
do not make two distinct orbital momentum groups for  but indeed, sodium atom 
is observed to split in two at the magnetic field with its magnetic dipole moment 

. The split of the level at magnetic field that cannot be explained with 
normal Zeeman effect is called the anomalous Zeeman effect. The Stern-Gerlach 
experiment was performed by the silver beam, and the experiment attributed the cause 
for this split to be the spin. A dual structure of the spectrum (multiplet) is commonly 
known including the case in which the magnetic field is not being charged for the 
presence of the interaction for the spin angular momentum and the orbital angular 
momentum. We call it the spin-orbit interaction. 
Spin Angular Momentum 
The spin angular momentum is considered to have similar characteristics of orbital 
angular momentum, and the momentum is considered to take two values. This 
momentum can be added to the orbital angular momentum, and which is observed 
experimentally in composite angular momenta, also. In the case where orbital angular 
momentum is , the momentum is split in two levels . Now, let us express the 
spin angular momentum operator as .  represents the vector operator, and its 
components must satisfy the same commutation relation for the orbital angular 
momentum. 

   (2) 
      (3) 
Moreover, the eigenfunction of the spin angular momentum operator  can be chosen 
simultaneously to take the eigenfunction of . The spin is consisted of two eigenstates 
in corresponding to the eigenvalue  of . ( ) 
Therefore, the electrons wavefunciton is considered as the functions of spin variable  
with spatial coordinates . The spin variable (spin coordinates) can be 
understood by the case , for example, when the eigenvalue  is  to have 

, when  is  then to have . The spin coordinates take no 
continuous value but take only the two distinct values. The spin wavefunction should be 
the following: 



   (4) 

From (4), we understand the orthonormal relation is satisfied. 

   (5) 
The following equations should be established by operating  to the spin wavefunction 

: 

     (6) 

Since there are only two spin states of electrons existed, we can express them as the 
vector of two components (two-dimansional complex vector), and we call the 
two-dimensional complex vector a spinor. Now, we actually construct a matrix 
representation of spin operator. The spin wavefunction  that corresponds to the 

eigenvalue  of  may be written as: 

         (7a) 
Spin wavefunction  for  as: 

         (7b) 
Then the definition (6) should be: 

    (8) 
Thus,  can be written as 2x2 matrix: 

       (9) 
We try to write out in the 2x2 matrix for , and define the spin angular momentum 
of step-up as well as step-down operators : 
      (10) 
Then: 

  
Or, we can write with (7), 



     (12) 

The matrix for  may be written as: 

     (13) 
Here putting them (13) back to the matrix of : 

       (14) 

Accordingly, the matrix representation of the spin angular momentum is defined as: 

     (15) 
From (15) above, we can directly obtain the matrix of spin angular momentum : 

  (16a) 
Along with the commutation relation: 

      (16b) 

Pauli matrices are often used instead of the matrices : 

   (17) 
Spin-orbit Interactions 
We stated earlier that there exist interactions between the spin angular momentum and 
the orbital angular momentum. By admitting the fact of the spin angular momentum 
and the magnetic dipole excitation, the interactions may be verified by taking following 
steps. Consider  and  as the coordinates and velocity of the electron having its 
atomic nucleus as its origin. Take a close look at the coordinates system fixed by the 
electron, atomic nucleus is moving with the velocity  at . The atomic nucleus in 
motion possesses the electric charge of , thus there is the electric current  
around the electron. The effective magnetic field  caused by the electric current is, 



    (18) 
at the position of the electron (from Biot-Savart law). The magnetic dipole excitation 
occurred in association with the electric spin  may become: 

         (19) 

In the case of the orbital angular momentum ,  

         
Through the experiment in the magnetic field, the proportionality constant 1 for the 
spin magnetic moment is determined. In the case of the electron, the magnetic dipole 
moments  and  have opposite directions to the respective angular momentum 
because the electron is charged negative. The interaction energy of spin magnetic 
moment of the electrons (19) and the magnetic field (18) becomes 

   
However, we need to conduct a complex correction to the rotational coordinates system 
due to the theory of the relativity, for the perspective atomic nucleus centered by the 
electrons. Which results in a necessary factor 1/2 (called Thomas factor) and the correct 
result is 

       (20a) 
More generally, when electrons are in motion at the central force potential , we 
can write as: 

    (20b) 

(Be careful with ). This is the spin-orbit interaction. 
The Hamiltonian that describes the movement of electrons may be written with the 

spin-orbit interaction , 

      (21) 

For now, we consider only for the situations of a single electron, and we study the kind 

of quantity that is conserved in this system. As we stated so many times before,  and 
 are commutative with the total Hamiltonian in the absence of the spin-orbit 

interactions and, thus in that case, it is possible to assign the electrons state to be the 

eigenvalues of  and . 



The following can be established: 

    
Therefore, the Hamiltonian  with the spin-orbit interaction and  are 

commutative.  Since  ( ), the following relations are 

established:  

      (22) 

Subsequently, the orbital angular momentum  and the spin angular momentum  
are being conserved, the eigenstate then be assigned by these quantities. The  

components  of the orbital and the spin angular momentums are not commutative 
with . Apparently, we have, 

  (23a) 

In the same way, 

    (23b) 
Then (23) in above implies that the presence of the spin-orbit interaction made the state 

to be no longer assigned by the eigenvalues of . Then, is there any other conserved 
quantity, which assigns the eigenstate?  
The spin-orbit interactions appear to be the scalar product of the orbital angular 
momentum  and the spin angular momentum . The sum of the two angular 
momenta as: 

        (24) 
Each element  of this composite angular momentum  is defined as: 

    (25) 

We can show that composite angular momentum satisfies the same commutation 
relations for the general angular momentum in the following: 

    (26a) 



     (26b) 

 (26c) 

Now, express , 

       (27) 

Inversely, 

       (28) 
Then the spin-orbit interaction is reformed as: 

     (29) 

Since  are commutative with , in the same way, 

 are commutative with . Let us study the commutation relation 

between  and . From (22), (27) and  we understand the 

following: 

        (30) 

In addition to (23a~b), 

     (31) 

Equations (22)(30)(31) show that the Hamiltonian (21), in which the system added by 

the spin-orbit interaction, is commutative with , therefore the eigenstate of 



a system that includes the spin-orbit interaction in the central force potential, can be 
assigned by the eigenstate of operators  

.                (32) 

We will look more specifically on the expectation value for the spin-orbit interaction in 
the above eigenstates. For the simplification, the Hamiltonian of the spin-orbit 
interaction can be written as: 

  

We need to pay a close attention to the fact that  is a function exclusively consisted 

of the radal vector . The electron takes the energy , the orbital angular momentum 

, the spin angular momentum , and the composite angular momentum  
with its  component  then written as: 

       (34) 
Now, 

   (35) 

The off-diagonal element of  turns zero hence the diagonal element may be 
calculated as: 

   (36) 

Here we have , 

    (37) 

(37) represents the magnitude of the spin-orbit interaction for single electron.  is 
proportional to the atomic number, and it is natural that the heavier the atom the 
greater the magnitude of the spin-orbit interaction  becomes. To make a rough 



estimate for this magnitude, we take  as the orbital radius, 

     
We understand from the above that magnitude of the energy is far smaller than the 
coulomb interaction energy between the electron and the atomic nucleus.  

Eigenfunction of Composite Angular Momentum  
In the central force field, the single electron eigenstate can be assigned as (34) when the 

spin-orbit interaction is present. Now, write out this eigenstate by . 
The eigenvalue  for , the upper limit of  is  and the lower limit . 
Thus,  takes the values in  ways. The value  is the maximum value of . 
Classically, this implies that   and  are combined in parallel, and facing in the same 

direction. The minimum value of  becomes  corresponding for the two  
angular momentums   and  combined in opposite direction. So, we understand that, 

 takes the following two values   (39) 
Apparently, we have the states with the orbital angular momentum  and the spin 
angular momentum  as many as, 

     
While the states consisted of , there exist as many as: 

    

The above agrees with the total number of states. To define the step-up and step-down 
operator of composite angular momentum, we can write the following: 

    
From the commutation relations (26a~c),  

   (41) 

In expressing the eigenstates for and  in considering a simple case, we choose 

 (p-electron orbit). The eigenstates with the basis  may be 
selected as following: 

    



    

     (42) 

Here the values  and  are defined so, we write : with the values  and 
 only. There are total of  states existed, and the each state 

in above corresponds to . 

These are the eigenstates of  and not of . The state  equals to the 

state , while the state  may take either 
 or .  

      (43a) 

When we operate the states above to : 

  

To put in order,  

   (43b) 

By operating to : 

  (43c) 



    (43d) 

According to (43a~d), all  states for  are obtained. 
For  states of ,  has the following two: 

     

Since one of the two makes linear combination (43b) with , we can 

easily understand that the other state  is orthogonal to (43b): 

  (44a) 
However, we may obtain only the ratio of coefficient by the orthogonal condition, the 

absolute value can be defined by the orthonormal condition. To operate , we obtain 
the following: 

  

  

  
To have them in order, we can write as: 

  
The coefficients appearing in (43a=d)(44a~b): 

      (45) 

(45) are commonly written as: 

        (46) 
The above is often called Wigner coefficient or Clebsch-Gordan coefficient. 

The rules for the composition  of orbital angular momentum and the spin 
angular momentum can be shared with the composition of general angular momentum 

 and , which may be expressed as: 



  
Here, in deed, 

     (48) 
       (49) 
Such compositions of angular momentum are useful in calculating coulomb interaction 
of many-electron systems. 
Level Split By Spin-orbit Interaction 

As we already seen, we know the composite angular momentum  takes the values 
, and the energy levels given in (36) may split in the following: 

     (50) 

Here,  has its level in  folds, and  has 
the level in  degeneracy.  
Anomalous Zeeman Effect 
The interaction energy between the spin magnetic dipole excitation (18) and the 
magnetic flux density is written as: 

       (51) 

(51) is called anomalous Zeeman effect correspond to the normal Zeeman effect that 
stems from orbital angular momentum. By adding the terms the normal Zeeman effect 
and the anomalous Zeeman effect, we can write the following 

         (52) 
The total energy turns more complex when the energy level was split at the magnetic 

field. (52) clearly states that this term is not commutative with . 
If the magnitude of the magnetic field is strong enough that we can ignore the 
magnitude of the spin-orbit interaction, it is more useful to assign the states by 

eigenfunctions of . In the figure below shows the behaviors of energy 

levels shifting from ,  to , . Where B is in the finite region, 

 are the only quantity to assign the states therefore, the electrons states possess 

the same  may be mixed. 



------Fig.----- 
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