Wavefunction for Hydrogen-like Atom

1. Differential Equations
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Generally, the atom in the above Coulomb potential is called hydrogen-like atom. If we

ignored electron-electron interaction, the electron in an atom with valency # can be

considered in such potential. The wavefunction for the electron is defined as:
(r) = R(r}Yim(0, )

Then, the differenatial equation that radial wavefunction (*} should follow may be:
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2. Behaviorat ' ~ U and "~ X

Convert the variant " with o = ar, and the differential equation (1) will be:
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Before directly solving for the equation (2), let’s consider the behaviors
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For the large enough values #:
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At # near 0, and at an atomic nuclei vicinity:
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The other solution # ~ ¢™'~" is not allowed for the following reasons: (1) the solution
cannot be normalized at [ # 0. (2) Vir~!' = —4=é(r] where ! =0 g0, it is not the

solution for Schrodinger’s equation at * = . Thus, only H~ ¢ jsvalid in this situation.

3. Series Solution Method
Based on previous discussion, we can convert the equation as:
R = 5F(p)

The differential equation in terms of 7, we obtain:
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The differential equation above holds # = U as a regular singular point. The solution in

need for the generalization can be obtained through the series in the following:
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To differentiate by each member:
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In addition,
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Set the coefficients of each term as 0, then:
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Since the solutions for# = —! — 1 is not acceptable from the previous discussion:
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For a large ", this series may behave as:
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Therefore, the behavior of » at large distance apart will be Fi{g}~ " In this case,
Rp) ~ e ¥ef = ¢% — o0 and which does not satisfy the boundary condition &(#) — 0 for
the convergence. In order to avoid this to happen, it is important for the series to have a
finite limit.
Based on the requirements from above:
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principal quantum number. To put it all together:
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And, the radial wavefunction can be obtained:
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Therefore, the nodes for /") are determined by {in terms of r polynomials™ — {/ + 11} x
{nodes of Yim} to be total n— 1.

4. Wavefunction in Hydrogen Atom and Energy Eigenvalue

An extent of wavefunction is:

B 0.53 x 10~%cm

me? (Bohr radius)

Then, the eigenenergy can be written as:
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The energy of ® =1 <=1 ig called | Ry (Rydberg) =136 ¢V and the unit fixed by



m=1h=1 ¢=1 igcalled “atomic unit”. 1 atomic unit of the energy is2 Ry= 27 eV

For specific radial wavefunctions, we define @ = @a/:
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In short, the radial wavefunction can be generalized to be:
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Loy (e) in the equation is called the associated Laguerre polynomials.
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This also satisfies the orthonormalization:
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