
Three-dimensional Square Well Potential
Square Well Potential 
A potential that takes 0 at outside the sphere of radius , and takes a constant value 

 inside the sphere: 

           (1) 

This is called a square well potential. Although it is an extraordinary case for the 
potentials and seems quite inconvenient in dealing with the real world, it is extremely 
practical and convenient in a way. In most books on quantum mechanics, a hydrogen 
atom is adopted for the examples, with an electron treated inside the coulomb 

potential  that is protracted in sequence, and has divergence in the 
position of atomic nucleus. The problems concerning with the coulomb potential may be 
accurately solved in analytical sense, yet there exists many unique aspects as well. 
Given the three-dimensional potentials as (1), the time-independent Schrodinger’s 
equation of an electron may be: 

      (2) 
This is the problem involving the spherical symmetry potential, in which the section 
depending on the anglular part of wavefunction  is given as spherical function 

, and the entirety may be written in a form of separation of variables: 
       (3) 
The process of applying the separation of variables to the equation (2) will yield the 

differential equation that obeys the radial wavefunction : 

   
The last term in the equation above represents the centrifugal force 
potential, which occurs by having the angular momentum operator to act on the 
function. For the equation (4), we need to divide in two different situations: the plus and 
minus of  for the further verification. 
Where , the conditions for  should be restricted to . If the 
wavefunction vanishes from the potential center , the effect given by the 
centrifugal force potential and the contribution by the terms in first order differentials 
can be ignored, thus (4) may be written in approximation: 

    



The behaviors of the wavefunction in a distance may be considered to follow the 
equation above. To solve the equation: 

     (5a) 

This shows when the wavefunction steps outside the region of potential, the function 
exponentially decays. As we observe in later on, we should be aware of the fact that 

there may be no solution for  ,while .  
In the case where , we can treat the wavefunction in the same way, however, the 
function does not decay rapidly in the far distance away but rather decays slowly as it 
oscillates.  

     (5b) 

When , the solution takes arbitrary values of , hence the continuous values for 
the eigenenergy are allowed (continuous eigenvalue problems). 
In rewriting the differential equation (4) with careful observation of the behaviors in 
wavefunction (6a~d), we can determine a general equation (6): 

  

    (6) 
Here  are defined as positive real number. An independent variable  

remains positive real number except for the case in (6b) where  the 
variable takes the pure imaginary number. The differential equation (6) is commonly 
known to be the differential equations for spherical Bessel function, and which has been 
very well examined. 
Let us now consider the linear ordinary differential equation below: 

       (7) 

In most cases, the differential equations adopted in physics appears to be in the similar 
forms because the differential equations are written in the second order linear 



differential equations in dynamical systems as well as in electric circuit. If we can have 

Taylor expansion of and  at around , in other words, if we can obtain 
the following equations: 

  
The elementary solutions for both in (7) may be obtained as following: 

    

Here  is called a regular point. 

Whereas and  contain the singular points in , and written at most: 

  

Then  is called the regular singular point for the differential equations. 

Moreover, one of the two elementary solutions should be obtained in series in this case. 

    

Based on the definition, the differential equations (6) takes  as the regular 
singular point. Now, before we generalize the case, let’s consider for the situation where 

.  We define , and then following can be established: 

                (8a) 
We easily gain the general solution: 

       (8b) 
Invariables  are determined by the boundary conditions, and apparently  takes 
either the positive real number or the pure imaginary number. For the equations 
corresponding to (6a,b), we can write the followings: 



                           

Notice in (9b), variables in trigonometric function become the pure imaginary number 
and the following relations are used: 

   
Now, take a close look at the behaviors of  at extremely close . Power 
expansion the (9a) for  in terms of , then obtain the followings: 

  
At first sight, this seems to be treated possibly as a solution because there is no terms 

that has divergence at the vicinity  in terms of the integral , 

however,  takes following against Laplacian: 

       (10) 

 does not satisfy the solutions of Schrodinger’s equation at , and 
therefore, should be discarded. In correspondence to (9a): 

         (9a’) 

(9a’) is the result gained from boundary condition at . At this point, we examine 
(10). We apply the Green’s theorem of three dimensions: 

   
While we treat  of  etc. as finite functions at origin vicinity. On 
the one hand, the left side integrals deals with inside the small sphere with radius  

and the origin , on the other hand, the right side integrals deals with the surface 
of the sphere. Moreover,  represents the derivative , which directed 
perpendicularly outward on the surface of a sphere with radius  of the function . 
Accordingly, the equation above can be reformed and written as: (given 

) 



  
Here we draw the radius  near to 0, both the left side and the right side second terms 
turns 0: 

  
This fact clearly indicates (10). 
As we take the next step, now consider the behavior where . Where , the 
term  diverges infinitely, hence this is not allowed in the case. So, the boundary 
condition where  for (9b) is determined as: 
        (9b’) 
To put in order, (9a)~(9b) are reformed and written as following: 

    (11a) 

    (11b) 

So far, we have considered the solutions in the regions of  and , then 
investigated the behaviors at , also at  to find the conditions that can be 
physically allowed. In the next step, the solutions for each region should be connected 
on the boundary line . Intrinsically, the differential equations contain the second 

order differentials, thus tacitly requires the continuity of the function  and its 
first order differential coefficient. This is the third boundary condition for : 

       (12a) 

      (12b) 

The two equations above define the relationship between the value  and ,  
when  the relationship between the value and ,  when . The 
absolute values for and  are determined by the conditions for 
normalization and incident waves. If there is the only necessity for determining the 
energy eigenvalue with no concern for the coefficient such as , we should consider the 
following equation: 

        (13) 



Using (11a~b), we can write the following: 

     (14a) 
First, in the case where , let’s examine the eigenenergy that depends on 
(14a). and  are not considered as independent invariables but rather considered as 
the following as we can see in (6a~b): 

       (15) 

From (14a) and (15), eliminate : 

      (16) 

From (14a), assume to be an arbitrary positive integer or 0, and then with , the 
condition can be described as: 

      (17) 

With (17), (16) should write over again to have: 

     (18) 
Thus, we obtain the following simultaneous equations: 

     (19) 

Although, the equations cannot be solved analytically, it is possible to obtain the 
solutions using graph. In Fig.7.1, shows the two equations drawn by the transverse 

axis  and the vertical axis . By reading the values at the intersection 
, the values for the eigenenergy should be determined. It is also studied that the 

numbers of the bound state  are invariable in the value . 

       (20) 
There are  intersections that can define the bound state, and we find the  bound 

states in accordance. As the value increases and deeper the potentials, the energy 

for the bound state decreases. When  there will be a new 

bound state added at . With the value  too small, there will be no bound 



states: 

       (21) 
----Fig.1----- 
Eigenstate of  
Let’s study the solution for (6) in terms of : 

       (22) 
Change the variable then (6) becomes: 

     (23) 
In terms of arbitrary number : 

     (24) 
This differential equation (24) is commonly known as Bessel differential equations. 
There are two elemental solutions, in which one of the two solutions is called Bessel 
function and that represents the width series near .  

     (25) 

 is the gamma function, and is defined as following when z is the integer or half 
odd integer: 

   
For the other independent solution is given by following with   

    (26) 

Where integer for the first equation, and  integer  for the second equation. 

 are called the second kind Bessel function or Neumann function. If we 
use  for (22), then the two independent solutions for (6) are written as: 

     (27) 



 are called the first kind spherical Bessel function and the second kind 
spherical Bessel function respectively. The second kind spherical Bessel function is 
often called spherical Neumann function as well. By using trigonometric function, 
these functions may be written as: 

       (28) 

Now, let’s express the behavior of  in the Fig.2 to picture a specific shape for 
: 

    
Alternatively, conduct series expansion near  to write out from the most 
essential terms: 

     (29a) 
When : 

   

The important point for the spherical Bessel function  is, to remain regular at 

origin, while the spherical Neumann function  should have its origin taking the 

pole of the order of , and to have both functions slowly decay as they oscillate. 
The general solution for the equation (6) can be given by the linear combination of 

and . 
----Fig.2----- 

Where , the variable turns to become the pure imaginary 
number in the spherical Bessel functions, and therefore should be carefully 
examined. Although, we can use the same indication method of (28)~(29b), it is 
easier to see when we conduct linear combination: 

        (30a) 

        (30b) 

These are called the first kind and the second kind Hankel functions. The behaviors 

of spherical Hankel functions for and  can be obtained by 



substituting (29a~b) into (30a~b): 

  
And: 

  
Given  for : 

  

 diverges infinitely, thus this cannot be accepted as a solution for (6). In 

the same way,  behaves likewise  at , and which cannot be 

accepted as solution for the Schrodinger’s equations. We have already investigated 

for the reason when , yet when , the integrals  

diverges at the integrals nearby . The solutions are determined as following: 

      (32a) 

     (32b) 

Now that the boundary conditions are scrutinized to define the forms of solutions for 

 and  to be (32a)~(32b), we need to obtain the wavefunctions that 

can smoothly connected at , as we did for . 
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