
Orbital Angular Momentum: Symmetry and Conservation (cont.) 
 
Conservation of Orbital Angular Momentum (The momentum for a single particle in the 
central force field) 
The central force is the “conservative force”, and thus the potential energy can be defied. 

Where the vector of the force is , 

   
We can define a univalent scalar function (potential function, potential energy) 

about a position vector . For the central force field, is a function exclusively 
related to the distance from the origin , that is . At this moment, 
Hamiltonian for a particle may be: 

    
By using the relational functions (6a~b)(11a~b), we can establish the following for the 
Hamiltonian (13): 

    

is operated with a kinetic energy term  in (11a~b), and in (6a~b), is 

operated with a spherically symmetric potential term . 

From what we have established in (14), each component of the orbital angular 

momentum operators  are operated with the Hamiltonian, hence we can 
define an eigenfunction of the Hamiltonian as to match with the eigenfunction of the 

orbital angular momentum operators  or either one of . This is the law of 

conservation of orbital angular momentum from quantum mechanical point of view. As 

we can find in (10), each component of the orbital angular momentum  does 
not operate with one another, if the energy eigenfunction is picked to match with the 
certain eigenfunctions and  simultaneously, there is no way that we can take the 
eigenfunctions of  or . In general, the energy eigenfunction may be taken to match 
with the eigenfunction of and . 
 
Figure.6-1(polar coordinates: abbr.) 



Orbital Angular Momentum in Polar Coordinates 
It is possible to further the discussion on the orbit angular momentum operator without 

using any representations of , however, in this section, we write off only the results 
represented with . The polar coordinates  are defined as shown in the Fig.6.1. 
In formula, we can write as: 

     
Or inversely,  

     

Based on these formulas, we can conduct polar coordinates transformation about (5): 

    

We leave this calculation of the variable transformation up to the readers.  
 

Eigenfunction of Orbital Angular Momentum Operators and  
As a first step, we try to obtain the eigenfunction of . We define as, 
harmonic function (we call harmonic polynomial) of the degrees homogeneous 
polynomial of . Harmonic function is the function that satisfies following: 

     

In this occasion,  can be expressed as: 

  



In polar coordinates, the formula can be reformed as: 

   
By conducting Laplacian operation, and taking into account that the expression (9’) and 

 are the harmonic functions, we can get: 

  

Therefore, the harmonic polynomial function is considered to be the eigenfunction of  

with an eigenvalue . 

   
We emphasize again, that  does not include . 
When  holds the eigenfunction  with an eigenvalue , and given that 

 as stated in (16), we can write as: 

  

The differential equation (22) can be easily solved despite that it is the function of , in 

which , with a reference to (19), we can obtain: 
   

 
The above applies only if  was a constant number, and  was an angle , 
which being defined upon dependence of  and .  is limited within the region 

, thus, there should be no confusion over the ways of expressing the angle  
or . 
Now, let’s consider over the polynomial function . The zero degree 
polynomial function is apparently: 

    
For the first-degree homogeneous expression, there exists the following three: 

    
 



which are the solutions for the Laplace’s equation , also they are what should be 
obtained for .  As for , it is consisted of the eigenfunction that satisfies 

 for , and satisfies the following condition: 

     

On the other hand, and  may be stated as: 

    

That are not consisted of the eigenfunction of , yet the two expressions above when 

combined together would be: 

   
Indicating that each and every value of may be consisting the eigenfunction with 

eigenvalue  of . In this way: 

  

Each value of  is the eigenfunction that takes eigenvalues . In 
defining , there is not much of significance in the meanings for making a negative 
multiplication to the equation for now.  

Although, when , the homogeneous polynomials in the second degree are found to 

be , all of them would not necessarily turn out to be the solution for 
the Laplace’s equation. Given , among the six of the second-degree 
polynomials, five linear combinations of those can be the independent eigenfunction of 

. In most of the times, the following five linear combinations are chosen: 



  
These are the solutions for the Laplace’s equation, and it is easy to notice the 

eigenfunction of , which correspond with . Although, they are not the 
eigenfunction of , as it was for , we can still obtain the eigenfunctions for 

 and  respectively by establishing the linear combination of 
, , and . In rewriting the eigenfunction in the actual form of : 

  
Based on the results showing above, where , the eigenfunction of the angular 
momentum  exists as many as , and each one of them corresponds 

. Which indicates that it is also established at any . To 
derive , we take the following steps:  
Using the Hermitian of the following that are equally established, so we can derive: 

   

   

, and assume  to be the integer then: 



    

For the appropriate selection of the constant numbers that are shown at the top of 
(25)~(26’), and  of (24), it is common and advantageous to normalize the 
wavefunctions of square-integrable measurable functions to be 1: 

  
Spherical Functions (Abbrev. in lectures) 
Through (25)~(26’), we have deepen our understanding over the angular momentum 

operator , as well as the eigenfunction  of . To consider them in more 
generalized terms, it is possible to take (21) as differential equations in terms of . 
Moreover, the expression for  given in (16) and (23) clarifies the conditions for 

 to satisfy the following differential equations: 

  
To conduct the variable transformation with , we can also write as: 

  
The differential equation showing above is well scrutinized over a period of time that it 

is called the associated Legendre’s differential equations, and its solution is 
called an associated Legendre function. As we have analyzed in (27),  takes either 0 or 
the positive integer, and takes either 0 or positive and negative integer within the 

region . 
In (29’), where , the differential equation can be: 

  
The differential equation showing above is called Legendre’s differential equations, and 

its solution is called Legendre function.  takes -degree polynomials about , 
where  is the integer or 0, so we can write as: 

  
To make specific for the formations when , 



     

The coefficients are arbitrarily decided. 
Generally, the associated Legendre function  is expressed by using Legendre 
function  when : 

    
The constant  can be defined by the general expression of : 

    

For , it is not as difficult to prove the given equations (25)~(26’) satisfies the 
equations (31)~(33). In order to show this in generalization, we can apply the Leibniz 
rule over and over. (see. Tetsuro Inui “Tokushu-kansu” Iwanami zensho) 

To put in order, we can say that the eigenfunction of orbital angular momentum and 
 are: 

   
 is called spherical function or spherical surface harmonics, and the operation 

of  can give the results: 

    

The factor in (34b) is usually taken, and the reason why we need this 

particular factor will be found in later on, but for now, think of it as an idiomatic 
expression. In (24)~(25’), what is written in terms of can be expressed in spherical 
function: 

    



Spherical function is considered as the eigenfunction, which includes 
Hermitian operator and with the eigenvalue  and . Commonly, it is 
known that the eigenfunctions of Hermitian operators with different eigenvalues are 
orthogonal to one another; hence there is an orthonormality relationship to be 
established. It is of course possible to make a proof by using the specific formations of 
the spherical function, though it may take a tremendous time and effort to complete. 
Spatial Images of Spherical Function  
To have an ability to picture the images of the wavefunctions can be a very essential 
matter henceforward. To provide an assistance to improve the skill, we will show the 
behaviors of the spherical functions in a space (Fig.6.2). In the figure, also seen in (24), 
(25), (26), the value  represents the number of the nodal surface for the wavefunction 
on the spherical surface. (Momentum/ ) corresponds to the number of nodes for the unit 
length of the plane waves, in the same way, (angular momentum/ ) corresponds to the 

number of nodal surface for the oscillating body on spherical surface. The value  
characterizes the form of the wavefunction when rotated about the z-axis. Therefore, 

the parity of : may give a sign changing in wavefunction toward a space inversion 
. Although, there is no reason for Hamiltonian and a space to have a special 

attention to z-axis, thus it may seem quite strange for the wavefunction and  of their 
eigenvalues to hold a special meaning; it is simply a matter of how the base is selected 
but nothing else. 
 
-----Fig.6-2------ 
Step-up Operator and Step-down Operator (abbrev. in lecture) 

Let’s take a closer look at the associated Legendre differential equations . We 
define , and differentiate (32) in terms of then multiply by to obtain: 

  
We can reform the associated Legendre differential equations (29’): 

  
Take (37a) for the first clause, and define : 

  
Keep in mind that  in (37b). Reconstitute the variable from  to , by 

: 



   
Each equation (37a~b) then, be reformed as: 

   

In the next step, rewrite the equation of  by the terms of  using (34b): 

  
Given , we can obtain the second equation by defining for the first 
equation. In this way, we can consider the limit of the second equation as . 

Now, we substitute  into the first equation to obtain: 

  

Where it is , then  

  
Therefore, the first equation can be finally reformed as: 

  
Which indicates that the second equation is valid under the condition of , and in 
the same way, through the second equation, we can derive the validity of the first 
equation under the condition of . In general, without any concerns over the sings 
of , the recurrence formula can be determined: 

  

We define new angular momentum operators as follows: 

    

In considering , the two equations from (38) represent the operation 

of the spherical function to : 



  

That is to say, the new operator  has an ability to change the eigenstate of the angular 

momentum  to be , and the reason why we picked a certain sign for the 
equations (25)~(26’) was to avoid the change in the signs of the equation at (40). 

are often called step-up operator and step-down operator respectively. The 
commutation relation of  can be determined with definition equation (39) and (10) to 
be written as: 

    

As an appendix, we write out the equation of  reformed in terms of  as well as in 

: 
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