
Orbital Angular Momentum: Symmetry and Conservation Law 
 
Conservation of Orbital Angular Momentum 
Let’s say, we have a particle in a central force field. Take an origin of the coordinate as a 
center of the force, and position the particle as , then the vectors of the force can be 

expressed as . Given a mass of the particle as , we can rewrite Newton’s 
Equation on Motion: 

              (1) 

The dots on the variable represent a time-derivative. The time-derivative for the vector 

product  according to (1) can be expressed as: 

   
Therefore,  remains constant independent of time. The vectors that we consider 
are the angular momentum (orbital angular momentum) in classical mechanics. 

(  is the momentum) 

            (2) 
The equation above shows that the angular momentum is kept constant on the particle 

where it moves within a central force field. The constant direction of represents the 
position vector  always stays on a one plane, which is perpendicular to . We can 
understand the meaning of a vector having constant magnitude, by simply following the 

steps: First, take direction on -axis and using two-dimension polar coordinates: 

    

Classic relational expression for : 

  
We can derive: 

    

Accordingly, constant (now we define constant) refers to the constant, which is 

independent of areal velocity . We categorize angular momentum especially for 

the orbital to differentiate the spin angular momentum that is a purely quantum 
mechanic phenomenon without any analogy in classical mechanics. 



The total angular momentum remains constant even when a system of particles 
interact with one another, and the vector of the force acting on in between the particles 

is parallel to the vector . The total angular momentum  is defined as 
the sum of the angular momentum of each particle with attachment , which refers to 
the individual particle: 

            (3) 
Time derivative of (3) is: 

         (4) 

Above indicates that the total angular momentum is being conserved.  is the force 
acting on the particle from the particle , and the equation of motion can be written 
with applications of Newton’s third law , and the fact of being 
parallel to : 

     
In classical mechanics, the angular momentum is conserved when the particle moves in 
a central force field or when the particles are interacting with a force acting along a 
direction of the mutual position vectors,.  
 
Orbital Angular Momentum Operator in Quantum Mechanics 
The orbital angular momentum is defined by (2), hence we can rewrite (2) as an 
operator: 

 

The component , when acted about the function , we can obtain: 

   
We can derive: 

  
In the same way, we can also derive: 



   

As we can see later on in (16), the above refers to the fact that  and others does not 

include the derivative  of the radial vector  in polar coordinates. 

Now, take a look at the close relationship between the operators of the orbital angular 
momentum and Laplacian . Apparently we can write out: 

    
Then, 

  
While it is: 

  

In short, from we can derive: 

    

This is equally formulated. We can also rewrite the Laplacian: 



    

Furthermore, to express in polar coordinates (note (15) and the graph 6.1) we 

can also write: 

  
As it is indicated in (6a~b),  does not include the derivatives of the radius vector 

component. We also obtain the fact that all the operators concerning with the angles  

are included within the term  when Laplacian is in polar coordinates because we 

cannot observe  in any other terms but , as it shows in (9’). 

There is another essential relational expression to be derived. The commutator  

is easily found out by using the definition (5): 

  
In the same way, we can calculate the followings: 

    

    
For another expression we can write: 

  
In exactly the same way, we can derive: 

    



As we have already shown in above, there exist a relationship (9’) between the 
Laplacian  and the sum of the square of the angular momentum operators. Moreover, 

 does not include the derivative  of the radius vector component. Based on these 

facts, indicates: 

      

(11c) can be derived through the direct calculation of the commutators and , 

also. 
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