Orbital Angular Momentum: Symmetry and Conservation Law

Conservation of Orbital Angular Momentum
Let’s say, we have a particle in a central force field. Take an origin of the coordinate as a
center of the force, and position the particle as T, then the vectors of the force can be
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expressed as fr)v/r  Given a mass of the particle as 171, we can rewrite Newton’s

Equation on Motion:
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The dots on the variable represent a time-derivative. The time-derivative for the vector

product T * T according to (1) can be expressed as:
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Therefore, T * T remains constant independent of time. The vectors that we consider

are the angular momentum (orbital angular momentum) in classical mechanics.
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The equation above shows that the angular momentum is kept constant on the particle

where it moves within a central force field. The constant direction of lf'represents the

position vector T always stays on a one plane, which is perpendicular to! . We can
understand the meaning of a vector having constant magnitude, by simply following the

steps: First, take [ direction on z-axis and using two-dimension polar coordinates:

r=rcosd, Yy =rsmo
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Classic relational expression for *= = TPy — HP=
Py = mMFcos ¢ — mrsin oo, py = mtsin ¢ + mr cos ¢g
We can derive:
2 do
£, = mr*—
dt
Accordingly, ' =constant (now we define ' =constant) refers to the constant, which is
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independent of areal velocity ' Tr'. We categorize angular momentum especially for

the orbital to differentiate the spin angular momentum that is a purely quantum

mechanic phenomenon without any analogy in classical mechanics.



The total angular momentum remains constant even when a system of particles

interact with one another, and the vector of the force acting on in between the particles

is parallel to the vector Tik = Ti — Tk The total angular momentum & is defined as

the sum of the angular momentum of each particle with attachment ’-, which refers to
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the individual particle:
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Time derivative of (3) is:
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Above indicates that the total angular momentum is being conserved. *i% is the force

acting on the particle ! from the particle ¥, and the equation of motion can be written
with applications of Newton’s third law F.. = —F}; and the fact of Ti — Tk being

mr; = E Fy
A.

In classical mechanics, the angular momentum is conserved when the particle moves in

parallel to Fi;:

a central force field or when the particles are interacting with a force acting along a

direction of the mutual position vectors,.

Orbital Angular Momentum Operator in Quantum Mechanics

The orbital angular momentum is defined by (2), hence we can rewrite (2) as an

operator-
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The component {1, when acted about the function flr ', we can obtain:
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We can derive:
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In the same way, we can also derive:



(o f(r) = F(r)ly, L f(r)= Fr)L. (6b)

As we can see later on in (16), the above refers to the fact that {+ and others does not

include the derivative a/for of the radial vector r in polar coordinates.

Now, take a look at the close relationship between the operators of the orbital angular

momentum and Laplacian & = % « V. Apparently we can write out:
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In short, from (1€ ~ €] we can derive:
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This is equally formulated. We can also rewrite the Laplacian:
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Furthermore, to express (r- V) in polar coordinates (note (15) and the graph 6.1) we
can also write:
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As it is indicated in (6a~b), [ does not include the derivatives of the radius vector

component. We also obtain the fact that all the operators concerning with the anglesﬁ‘ ®
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are included within the term * when Laplacian is in polar coordinates because we
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cannot observe &- @ in any other terms but ¢ , as it shows in (9).

There is another essential relational expression to be derived. The commutator [a: €s]

is easily found out by using the definition (5):
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In the same way, we can calculate the followings:
[0y, 0] = ihl,, [f., 0] =ihl, (10b)
1€z, 8] = [y, 8] = [£:,€.] = O (10¢)
For another expression we can write:
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In exactly the same way, we can derive:

€, Al =[{,,A] =0 (11h)



As we have already shown in above, there exist a relationship (9) between the
Laplacian®d and the sum of the square of the angular momentum operators. Moreover,
- I.F

a does not include the derivative ©* of the radius vector component. Based on these

(11a~1
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facts, *!indicates:

[P =, 2 =[. =0 (11c!
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(11c) can be derived through the direct calculation of the commutators £ and Lz, lys L.
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also.
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