Chapter 3

States and Operator

3.1 Base States and its Ortho-Normality and Completeness

A set of the states that satfisfies the following relation is called "base states".

$$
\begin{array}{rr}
\langle j \mid k\rangle=\delta_{j k} & \text { (Ortho-Normal) } \\
|\psi\rangle=\sum_{\text {all } j}|j\rangle\langle j \mid \psi\rangle & \text { (Complete). }
\end{array}
$$

$|x\rangle,|y\rangle$ are the base states from the polarized light. And there are some other sets of base states, also. For example,

$$
\left|45^{\circ}\right\rangle=\frac{1}{\sqrt{2}}(|x\rangle+|y\rangle), \quad\left|-45^{\circ}\right\rangle=\frac{1}{\sqrt{2}}(|x\rangle-|y\rangle)
$$

3.2 Polarized States

Any polarizations can be separated into two states $|x\rangle$ and $|y\rangle$ by Nicol prism.
Therefore, we can say that any polarized state can be defined by a combination of a set of base states $\{|x\rangle,|y\rangle\}$. Such as,

$$
\begin{gathered}
|\theta\rangle=\cos \theta|x\rangle+\sin \theta|y\rangle) \\
\left|45^{\circ}\right\rangle=\frac{1}{\sqrt{2}}(|x\rangle+|y\rangle) \\
\left|-45^{\circ}\right\rangle=\frac{1}{\sqrt{2}}(|x\rangle-|y\rangle) \\
|R\rangle=\frac{1}{\sqrt{2}}(|x\rangle+i|y\rangle) \quad \text { (Right Hand Circular) } \\
|L\rangle=\frac{1}{\sqrt{2}}(|x\rangle-i|y\rangle) \quad \text { (Left Hand Circular). }
\end{gathered}
$$

Furthermore, $\left\{\left|45^{\circ}\right\rangle,\left|-45^{\circ}\right\rangle\right\}$ and $\{|R\rangle,|L\rangle\}$ are the sets of base states respectively.

3.3 Spin 1/2 States

Electrons are considered to be $1 / 2$ particles, because the magnitude of the spin is $1 / 2$ times \hbar, and the particles are separated into two states $|+z\rangle$ and $|-z\rangle$ in an inhomogeneous magnetic field B_{z}, in which $\{|+z\rangle,|-z\rangle\}$ is a set of base states, and any spin $1 / 2$ electron states can be represented by a combination of these states.

$$
\begin{aligned}
& |+x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle+|-z\rangle) \\
& |-x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle-|-z\rangle) \\
& |+y\rangle=\frac{1}{\sqrt{2}}(|+z\rangle+i|-z\rangle) \\
& |-y\rangle=\frac{1}{\sqrt{2}}(|+z\rangle-i|-z\rangle) .
\end{aligned}
$$

Furthermore, $\{|+x\rangle,|-x\rangle\}$ and $\{|+y\rangle,|-y\rangle\}$ are consisted of other base states respectively.

3.4 Particles in One-Dimensional Space

Any single particle without consideration of any inner state such as spin can be expressed in the combination of position base states $\left\{\left|x_{j}, y_{k}, z_{l}\right\rangle\right\}$ by cutting the whole space periodically with a pitch of $\Delta x, \Delta y, \Delta z$.

In one-dimensional space, each base state in above becomes $\left\{\left|x_{j}\right\rangle\right\}$, which corresponds to the space $x_{j} \sim x_{j}+\Delta x$.

The discussion becomes simpler when the total size of the space is limited by $-L / 2 \sim$ $L / 2$ and $L=N \Delta x$, as well as the periodical boundary condition is assumed.

Apparently

$$
\left\langle x_{j} \mid x_{k}\right\rangle=\delta_{j k},
$$

and

$$
|\psi\rangle=\sum_{\text {all } j}\left|x_{j}\right\rangle\left\langle x_{j} \mid \psi\right\rangle .
$$

3.5 Momentum Base States

As one of the one-dimensional states under the periodic boundary condition, there exists a momentum state in the following:

$$
\left\langle x_{j} \mid p_{J}\right\rangle=\frac{1}{\sqrt{N}} \exp \left(i \frac{p_{J} x_{j}}{\hbar}\right) .
$$

p_{J} is $p_{J}=(2 \pi \hbar / L) J$ where J is an integer in the region $-(N-1) / 2 \leq J \leq(N-1) / 2$. This set of momentum states can construct another set of the base states.

3.6 Continuous One-Dimensional Space

By setting $\Delta x \rightarrow 0$, the one-dimensional space can be made continuous. In this way, probability density $p\left(x_{j}\right)=P\left(x_{j} \sim x_{j}+\Delta x\right) / \Delta x$ is prefered over the probability $P\left(x_{j} \sim\right.$ $\left.x_{j}+\Delta x\right)$.

According to the above treatment, the probability amplitude is replaced by the probability density amplitude.

$$
\left\langle\underline{x} \mid \underline{x^{\prime}}\right\rangle=\delta_{x x^{\prime}} / \Delta x \quad \text { (Ortho-Normal) }
$$

By $\Delta x \rightarrow 0$, the right-most function will be Dirac δ function $\delta\left(x-x^{\prime}\right)$.

$$
\psi=\sum \Delta x|\underline{x}\rangle\langle\underline{x} \mid \psi\rangle \quad \text { (Complete). }
$$

By $\Delta x \rightarrow 0, \sum \Delta x$ becomes $\int d x .\langle\underline{x} \mid \psi\rangle$ is sometimes called wave function $\psi(x)$.

3.7 Operator

Any process or apparatus that is capable of changing the quantum state can be expressed by a operator. Apparently we suppose linear processes.

$$
\widehat{A}|\psi\rangle=|\phi\rangle .
$$

We can expand the operator by basic states. ${ }^{\wedge}$ is attached for the clarification that A is not a scalar variable.

$$
\langle j| \widehat{A}|k\rangle\langle k \mid \psi\rangle=\langle k \mid \phi\rangle .
$$

[Example] x polarizer

$$
(x \text { polarizer })|x\rangle=|x\rangle, \quad(x \text { polarizer })|y\rangle=0
$$

From the above facts, we can deduce

$$
(x \text { polarizer })|\psi\rangle=(x \text { polarizer })|x\rangle\langle x \mid \psi\rangle+(x \text { polarizer })|y\rangle\langle y \mid \psi\rangle=|x\rangle\langle x \mid \psi\rangle .
$$

3.8 Identity Operator

An operation which does not involve any changes in state, we define identity operator \widehat{I}.

$$
\begin{gathered}
\widehat{I}|\psi\rangle=|\psi\rangle \\
\langle j| \widehat{I}|k\rangle=\langle j \mid k\rangle=\delta_{j k} .
\end{gathered}
$$

Based on the facts, the completeness equation can be expressed as follows:

$$
\sum_{\text {all } j}|j\rangle\langle j|=\widehat{I} \quad \text { (Complete). }
$$

By including the equations between the bra and ket, an expansion by the basic states can be easily obtained.

